- hausdorffscher Raum
-
hausdorffscher Raum[nach F. Hausdorff\], Mathematik: ein topologischer Raum.
Universal-Lexikon. 2012.
Universal-Lexikon. 2012.
Hausdorffscher Raum — Hausdorff Raum (T2) berührt die Spezialgebiete Mathematik Topologie ist Spezialfall von topologischer Raum präregulärer Raum ( … Deutsch Wikipedia
T5-Raum — In der Topologie und verwandten Gebieten der Mathematik betrachtet man oft nicht alle topologischen Räume, sondern stellt bestimmte Bedingungen, die von den interessierenden Räumen erfüllt werden sollen. Einige dieser Bedingungen nennt man… … Deutsch Wikipedia
topologischer Raum — topologischer Raum, ein Paar (X, T ), bestehend aus einer Menge X und einer topologischen Struktur T auf X, d. h. einer Teilmenge T der Potenzmenge von X, die invariant … Universal-Lexikon
Hausdorff-Raum — Zwei Punkte die durch Umgebungen getrennt werden. Ein Hausdorff Raum (auch hausdorffscher Raum) (nach Felix Hausdorff) oder separierter Raum ist ein topologischer Raum M, in dem das Trennungsaxiom T2 (auch Hausdorffeigenschaft oder Hausdorff… … Deutsch Wikipedia
Trennungsaxiom — In der Topologie und verwandten Gebieten der Mathematik betrachtet man oft nicht alle topologischen Räume, sondern stellt bestimmte Bedingungen, die von den interessierenden Räumen erfüllt werden sollen. Einige dieser Bedingungen nennt man… … Deutsch Wikipedia
Fixpunktsatz von Schauder — Der Fixpunktsatz von Schauder ist nach dem Mathematiker Juliusz Schauder benannt und gibt eine hinreichende Bedingung an, unter der eine Abbildung einen Fixpunkt besitzt. Er stellt eine starke Verallgemeinerung des Fixpunktsatzes von Brouwer dar … Deutsch Wikipedia
Vektorraum — Vẹk|tor|raum, der (Math.): Menge mit einer Addition u. Vervielfachung, für die bestimmte Rechengesetze gelten, u. Vektoren als Elemente. * * * Vẹktor|raum [v ], linearer Raum, ein Tripel (V, +, ·) über einem Körper K, bestehend aus einer… … Universal-Lexikon
Topologischer Vektorraum — Ein topologischer Vektorraum ist ein Vektorraum, auf dem neben seiner algebraischen auch noch eine damit verträgliche topologische Struktur definiert ist. Sei . Ein K Vektorraum E, der zugleich topologischer Raum ist, heißt topologischer… … Deutsch Wikipedia
Homeomorph — Ein klassisches Beispiel für einen Homöomorphismus: eine Kaffeetasse und ein Donut – topologisch betrachtet dasselbe Ein Homöomorphismus (nicht zu verwechseln mit Homomorphismus und Homotopie) ist ein zentraler Begriff im mathematischen… … Deutsch Wikipedia
Homeomorphismus — Ein klassisches Beispiel für einen Homöomorphismus: eine Kaffeetasse und ein Donut – topologisch betrachtet dasselbe Ein Homöomorphismus (nicht zu verwechseln mit Homomorphismus und Homotopie) ist ein zentraler Begriff im mathematischen… … Deutsch Wikipedia